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ABSTRACT
We introduce a new class of continuous distributions called the
generalized transmuted-G familywhichextends the transmuted-Gclass.
We provide six special models of the new family. Some of itsmathemati-
cal properties including explicit expressions for the ordinary and incom-
plete moments, generating function, Rényi and Shannon entropies,
order statistics and probability weightedmoments are derived. The esti-
mation of the model parameters is performed by maximum likelihood.
The flexibility of the proposed family is illustrated by means of three
applications to real data sets.

1. Introduction

Several continuous univariate distributions have been extensively used in the literature for
modeling data in many areas such as engineering, economics, biological studies and envi-
ronmental sciences. However, applied areas such as lifetime analysis, finance, and insurance
clearly require extended forms of these distributions. Therefore, several classes of distri-
butions have been constructed by extending common families of continuous distributions.
These generalized distributions give more flexibility by adding one or more parameters to
the baseline model. Gupta et al. (1998) pioneered the exponentiated-G (E-G) class, which
consists of raising the cumulative distribution function (cdf) to a positive power parameter.
Many other classes can bementioned such as the beta generalized (BG) family by Eugene et al.
(2002), Kumaraswamy (Kw-G) family by Cordeiro and de Castro (2011), and exponentiated
generalized (EG) family by Cordeiro et al. (2013).

Consider a baseline cdf G (x; ϕ) and probability density function (pdf) g (x; ϕ) depend-
ing on a parameter vector ϕ, where ϕ = (ϕk) = (ϕ1, ϕ2, . . .). Thus, the cdf and pdf of the
transmuted class (TC) of distributions are defined by

F (x; λ, ϕ) = G (x; ϕ) [(1 + λ) − λG (x; ϕ)] (1)

and

f (x; λ, ϕ) = g (x; ϕ) [1 + λ − 2λG (x; ϕ)] , (2)
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Benha University, Benha, , Egypt.
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respectively. The TC density is a mixture of the baseline density and the E-G density with
power parameter two. Furthermore, λ = 0 in(2) gives the baseline distribution. Further
details were explored by Shaw and Buckley (2007).

In this paper, we propose the generalized transmuted-G (GT-G) family of distributions,
which extends the TC model by incorporating two additional shape parameters to generate
more flexible distributions. The main advantage of the new family relies on the fact that prac-
titioners will have a quite flexible three-parameter generator to fit real data from several fields.
It may serve as a good alternative to other two and three-parameter classes. We also hope that
the proposed family may work better (at least in terms of model fitting) than other classes of
distributions in certain practical situations, although it cannot always be guaranteed. Addi-
tionally, we provide a comprehensive account of some of its mathematical properties. As we
will see later, the formulae related to the proposed family are simple and manageable, and
with the use of modern computer resources and their numerical capabilities, it may prove to
be a useful addition to those distributions applied for modelling data in economics, medicine,
reliability and engineering, among other areas.

The rest of the paper is organized as follows. In Section 2, we define the GT-G family
and give a very useful representation for its density function. In Section 3, we present six
special models corresponding to the baseline Weibull, Lomax, Burr X, log-logistic, Lindley
and Weibull geometric distributions and plots of their pdfs. In Section 4, we derive some of
its mathematical properties including ordinary and incomplete moments, mean deviations,
moment generating function (mgf), Rényi, Shannon and q-entropies. Order statistics and
their moments are investigated in Section 5. In Section 6, we obtain the probability weighted
moments (PWMs) of the new family. Maximum likelihood estimation of the model param-
eters is addressed in Section 7. In Section 8, we provide three applications to real data to
illustrate the flexibility of the new family. Finally, some concluding remarks are addressed in
Section 9.

2. The GT-G family

The cdf of the GT-G family is defined by

F(x) = F (x; λ, a, b, ϕ) = G (x; ϕ)a
[
(1 + λ) − λG (x; ϕ)b

]
. (3)

The pdf corresponding to (3) is given by

f (x; λ, a, b, ϕ) = g (x; ϕ)G (x; ϕ)a−1 [a (1 + λ) − λ (a + b)G (x; ϕ)b
]
. (4)

We denote by X ∼GT-G(λ, a, b,ϕ) a random variable having density function (4). Fur-
ther, we will omit the dependence on the model parameters and write simply g(x) = g(x;ϕ),
F(x) = F(x; λ, a, b,ϕ) and f (x) = f (x; λ, a, b,ϕ), etc. Some special cases of the new family
are listed in Table 1.

Table . Sub-models of the GT-G family.

a b λ G (x;ϕ) Reduced Model Author

  λ G (x;ϕ) T-G family Shaw and Buckley ()
a  — G (x;ϕ) E-G family Gupta et al. ()
   G (x;ϕ) G (x; ϕ) —



COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 4121

2.1. Mixture representation

We provide a useful representation for (4) using the concept of exponentiated class. Hence-
forth, for an arbitrary baseline cdfG(x;ϕ), letYδ be a random variable following the E-G class
with power parameter δ > 0, sayYδ ∼E-G(δ,ϕ), i.e., its cdf and pdf areHδ (x) = G(x;ϕ)δ and
hδ(x) = δ g(x;ϕ)G(x;ϕ)δ−1, respectively. The properties of the exponentiated distributions
have been studied by many authors in the last twenty years.

Therefore, the GT-G family density in (4) can be expressed as

f (x) = (1 + λ) ha (x; ϕ) − λ ha+b (x; ϕ) . (5)

Equation (5) reveals that theGT-Gdensity function is amixture of twoE-Gdensities. Thus,
some mathematical properties of the new family can be derived from those properties of the
E-G class. For example, the ordinary and incomplete moments and mgf of X can be obtained
directly from those quantities of the E-G class.

3. Special models

In this section, we provide six special cases of the GT-G family. The pdf (4) will be most
tractable when G (x; ϕ) and g (x; ϕ) have simple analytic expressions. These special mod-
els generalize some well-known distributions in the literature. Here, we provide six special
models of this family corresponding to the baseline Weibull (W), Lomax (Lo), Burr X (BrX),
log-logistic (LL), Lindley (Li) andWeibull geometric (WG) distributions. The pdf and cdf (for
x > 0) of these baseline models are listed in Table 2.

The parameters of the above densities are all positive real numbers except for the WG
distribution, where p ∈ (0, 1).

3.1. The GT-W distribution

The GT-W pdf is given by

f (x) = βαβxβ−1 exp
[
−(αx)

β
] {

1 − exp
[
−(αx)

β
]}a−1

×
{
a (1 + λ) − λ (a + b)

(
1 − exp

[
−(αx)

β
])b}

.

TheGT-Wdistribution includes the transmutedWeibull (TW) distribution when a = b =
1. For b = 0, we obtain the exponentiated Weibull (EW) distribution. For β = 2, we obtain

Table . The pdfs and cdfs of baseline models.

Model g(x) G(x)

W βαβxβ−1 e−(αx)
β

1 − e−(αx)
β

Lo (α/β)
[
1 + (x/β)

]−(α+1) 1 − [1 + (x/β)
]−α

BrX 2αβ2 x e−(βx)
2 {
1 − e−(βx)

2 }α−1 {
1 − e−(βx)

2 }α
LL βα−βxβ−1

[
1 + ( x

α

)β]−2
1 −
[
1 + ( x

α

)β]−1

Li α2

1+α
(1 + x)e−αx 1 − 1+α+αx

1+α
e−αx

WG αβα (1 − p) xα−1e−(βx)α {1 − pe−(βx)α }−2 1−e−(βx)α

1−pe−(βx)α
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Figure . The GT-W pdf: (a) For α = λ = . and β = : a= b= . (blue line), a= . and b= 1 (black line), a
=  and b= .8 (yellow line), a = , and b= . (dotted line) and a = . and b= .8 (green line) (b) For α =
β = . and λ = : a= b= 2.5 (black line), a=  and b= .2 (dashed line), a=  and b= 1.5 (yellow line) a
= ., and b=  (dotted line) and a= b= .4 (green line).

the GT-Rayleigh (GT-R) distribution. For β = 1, we have the GT-exponential (GT-E) distri-
bution. Plots of the GT-W density for some parameter values are displayed in Figure 1.

3.2. The GT-Lo distribution

The GT-Lo density is given by

f (x) =
(

α

β

)[
1 +
(
x
β

)]−(α+1) {
1 −
[
1 +
(
x
β

)]−α}a−1

×
{
a (1 + λ) − λ (a + b)

{
1 −
[
1 +
(
x
β

)]−α}b}
.

The GT-Lo distribution includes the transmuted Lomax (TLo) distribution when a = b = 1.
For b = 0, we obtain the exponentiated Lomax (ELo) distribution. The plots of the GT-Lo
density are displayed in Figure 2 for some parameter values.

3.3. The GT-BrX distribution

The GT-BrX density is given by

f (x) = 2αβ2x exp
[
−(βx)

2
] {

1 − exp
[
−(βx)

2
]}αa−1

×
{
a (1 + λ) − λ (a + b)

(
1 − exp

[
−(βx)

2
])αb
}

.

The GT-BrX distribution includes the transmuted Burr X (T-BrX) distribution when a =
b = 1. For b = 0, we obtain the exponentiated Burr X (EBrX) distribution. We display some
possible shapes of the GT-BrX density function in Figure 3.
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Figure . The GT-Lo pdf: (a) For α = . and β = .: λ= ., a= . and b= . (blue line), λ = ., a= . and
b= 1.5(black line), λ = , a= . and b= 3 (dashed line), λ = . and a= b=  (yellow line), λ = a=  and
b=  (dotted line) and λ = a= b= .5 (green line) (b) For α = , β = . and a= .: λ = −1 and b=  (blue
line), λ = −1 and b= 2.5(black line), λ = . and b= 2.5(dashed line), λ = −1 and b= 5 (yellow line) and
λ = . and b= 3(dotted line).

3.4. The GT-LL distribution

The GT-LL density is given by

f (x) = βα−βxβ−1
[
1 +
( x
α

)β
]−2
{
1 −
[
1 +
( x
α

)β
]−1
}a−1

×
⎧⎨⎩a (1 + λ) − λ (a + b)

(
1 −
[
1 +
( x
α

)β
]−1
)b
⎫⎬⎭ .

The GT-LL distribution includes the transmuted log-logistic (TLL) model when a = b = 1.
For b = 0, we obtain the exponentiated log-logistic (ELL) distribution. Figure 4 gives plots of
the GT-LL density for selected parameter values.

Figure . The GT-BrX pdf: (a) For α = ., β = . and λ = : a = b = . (blue line), a = . and b = 1 (black
line), a=  and b= 1.5 (green line), a= , and b= . (yellow line) and a= . and b= 3 (dashed line) (b) For
α = β = .: λ = a= b= .5 (blue line), λ = ., a=  and b= 4(dotted line), λ = .3, a= . and b= 3 (yellow
line) and λ = −1, a=  and b= 2 (dashed line).
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Figure . The GT-LL pdf: (a) For α = β = : λ = −1, a= . and b= . (dotted line), λ = −.5, a= . and b=
3(red line), λ = ., a= . and b= 5(yellow line) and λ = ., a=  and b= .5(dashed line) (b) For α = λ =
. and β = .: a= b= 1.5(blue line), a= b= .5(black line), a= 1 and b= 3(dashed line) a=  and b= .
(yellow line) and a= 1.5 and b= .1(dotted line).

3.5. The GT-Li distribution

The GT-Li pdf is given by

f (x) = α2

1 + α
(1 + x) exp(−αx)

[
1 − 1 + α + αx

1 + α
exp(−αx)

]a−1

×
{
a (1 + λ) − λ (a + b)

[
1 − 1 + α + αx

1 + α
exp(−αx)

]b}
.

The GT-Li distribution includes the transmuted Lindley (TLi) model when a = b = 1. For
b = 0, we obtain the exponentiated Lindley (ELi) distribution. Plots of the GT-Li density
function are displayed in Figure 5 for some parameter values.

Figure . The GT-Li pdf: (a) For α = .: λ = a = b = . (blue line), λ = ., a = . and b = .5(black line),
λ = −1, a =  and b = 1.5(dotted line), λ = ., a =  and b =  (yellow line) and λ = −1, a =  and b =
1.5(dashed line) (b) For α = b= .: λ = −.5 and a = .2(blue line), λ = a = .5(black line), λ = . and a =
2(dotted line) and λ = −1 and a= 2(dashed line).



COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 4125

Figure . The GT-WG pdf: (a) For α = , β =  and λ = p= .: a= . and b= . (blue line), a= b= λ = .5
(black line), a =  and b= .5 (dotted line), a = ., and b=  (dashed line) and a = b= .3 (yellow line) (b)
For α = ., β = . and p= .: a = b= λ = .3 (dashed line), λ = −1 and a = b= 3 (black line), a = b= λ

= .5(dotted line) λ = ., a= . and b=  (blue line) and λ = ., a= . and b= 4 (dotted-green line).

3.6. The GT-WG distribution

The GT-WG density is given by

f (x) = αβα
(
1 − p

)
xα−1 {1 − p exp [−(βx)α]

}−2

× exp (−(βx))α

{
1 − exp(−(βx)α

1 − p exp [−(βx)α]

}a−1

×
{
a (1 + λ) − λ (a + b)

(
1 − exp [−(βx)α]
1 − p exp [−(βx)α]

)b}
.

TheGT-WGdistribution includes the transmutedWeibull Geometric (TWG)model when
a = b = 1. For b = 0, we obtain the exponentiated Weibull Geometric (EWG) distribution.
Figure 6 gives possible shapes of the GT-WG density function for some parameter values.

4. Mathematical properties

The formulae derived throughout the paper can be easily handled in most symbolic com-
putation software platforms such asMaple,Mathematica andMatlab. These platforms have
currently the ability to deal with analytic expressions of formidable size and complexity. Estab-
lished explicit expressions to calculate statistical measures can bemore efficient than comput-
ing them directly by numerical integration.

4.1. Moments

The nth ordinary moment of X , say μ′
n, follows from (5) as

μ′
n = E(Xn) = (1 + λ)E(Yn

a ) − λE(Yn
a+b). (6)

For δ > 0, we have E(Yn
δ ) = δ

∫∞
−∞ xn g(x;ϕ)G(x;ϕ)δ−1 dx, which can be computed

numerically in terms of the baseline quantile function (qf) QG(u;ϕ) = G−1(x;ϕ) as

E(Yn
δ ) = δ

∫ 1

0
QG(u; ϕ)n uδ−1du.
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Setting n = 1 in (6) gives themean ofX . The centralmoments (μs) and cumulants (κs) ofX
are determined from (6) as μs =∑s

k=0 (−1)k
(s
k

)
μ′k

1 μ′
s−k and κs = μ′

s −
∑s−1

k=1

(s−1
k−1

)
κk μ′

s−k,
respectively, where κ1 = μ′

1. The skewness γ1 = κ3/κ
3/2
2 and kurtosis γ2 = κ4/κ

2
2 are obtained

from the third and fourth standardized cumulants.

4.2. Incompletemoments

The nth incomplete moment of X is defined bymn(y) = ∫ y−∞ xn f (x)dx. We have

mn(y) = (1 + λ)mn,a(y) − λmn,a+b(y), (7)

where

mn,δ (y) =
∫ G(y; ϕ)

0
QG(u; ϕ)n uδ−1 du.

The integral mn,δ (y) can be determined analytically for special models with closed-form
expressions for QG(u;ϕ) or computed at least numerically for most baseline distributions.

An important application of the first incompletemoment ofX in (7), saym1(y), refers to the
Bonferroni and Lorenz curves. These curves are very useful in economics, reliability, demog-
raphy, insurance and medicine. For a given probability π , the Bonferroni and Lorenz curves
are given by B(π ) = m1(p)/(pμ′

1) and L(p) = m1(p)/μ′
1, where p = Q(π ) = F−1(π ) can

be determined numerically by inverting (3).
Another application refers to themean deviations about themean (δ1 = E(|X − μ′

1|)) and
about the median (δ2 = E(|X − M|)) of X given by

δ1 = 2μ′
1 F(μ′

1) − 2m1(μ
′
1) and δ2 = μ′

1 − 2m1(M),

respectively, whereM is themedian ofX ,μ′
1 = E(X ) comes from equation (6), F(μ′

1) is easily
calculated from (3) andm1(z) comes from (7) with n = 1.

4.3. Generating function

The mgf of X , sayM(t ) = E(et X ), is obtained from (5) as

M(t ) = (1 + λ)Ma (t; ϕ) − λMa+b (t; ϕ) ,

whereMδ (t;ϕ) is the generating function ofYδ given by

Mδ(t; ϕ) = δ

∫ ∞

−∞
etx G(x; ϕ)δ−1 g(x; ϕ)dx = δ

∫ 1

0
exp [t QG(u; δ )] uδ−1du.

The last two integrals can be computed numerically for most parent distributions.

4.4. Entropies

The Rényi entropy of a random variable X represents a measure of variation of the uncer-
tainty. The Rényi entropy is defined by

Iθ (X ) = 1
1 − θ

log
∫ ∞

−∞
f (x)θ dx, θ > 0 and θ �= 1.

By using the pdf in (4), we can write

f (x)θ = (1 + λ)θ ha (x)θ
{
1 − d G (x)b

}θ
,

where d = λ (a + b)/[a (1 + λ)].
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Then, the Rényi entropy of a random variable X having the GT-G family is given by

Iθ (X ) = 1
1 − θ

log
{
(1 + λ)θ

∫ ∞

−∞
ha (x)θ

{
1 − dG (x)b

}θ
dx
}
.

The q-entropy, say Hq (X ), is given by

Hq (X ) = 1
q − 1

log
{
1 −
∫ ∞

−∞
f (x)q dx

}
, q > 0 and q �= 1,

and then

Hq (X ) = 1
q − 1

log
{
1 −
[
(1 + λ)q

∫ ∞

−∞
ha (x)q

{
1 − d G (x)b

}q
dx
]}

,

for q > 0 and q �= 1.
The Shannon entropy, say SI, of a random variable X is defined by

SI = E
{− [log f (X )

]}
.

It is a special case of the Rényi entropy when θ ↑ 1. Therefore, based on Equation (5), we
can write

SI = − {log [(1 + λ) Ja − λ Ja+b]
}
,

where

Jk = k
∫ ∞

0
x g (x) G (x)k−1 dx.

The last equation can be determined numerically for any G model.

5. Order statistics

Order statistics make their appearance in many areas of statistical theory and practice. Let
X1, ...,Xn be a random sample from the GT-G family. The pdf of the ith order statistic, say
Xi:n, is given by

fi:n (x) = f (x)
B (i, n − i + 1)

n−i∑
j=0

(−1) j
(
n − i
j

)
F j+i−1(x). (8)

We can write from (3)

F j+i−1(x) = (1 + λ) j+i−1 G (x)a( j+i−1)
{
1 − s G (x)b

} j+i−1
,

where s = λ/ (λ + 1). Using the power series expansion, the last equation can be expressed
as

F j+i−1(x) =
∞∑
k=0

wk G (x)kb+a( j+i−1) , (9)

where wk = (−1)k �( j + i)sk (1 + λ) j+i−1/[k!�( j + i − k)].
By inserting (4) and (9) in Equation (8), the pdf of Xi:n becomes

fi:n (x) =
∞∑
k=0

n−i∑
j=0

w∗
k

{
mhkb+a( j+i) (x) − q hb(k+1)+a( j+i) (x)

}
, (10)
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wherem = m(k, j) = a(1+λ)

kb+a( j+i)
, q = q(k, j) = λ(a+b)

b(k+1)+a( j+i)
and

w∗
k = (−1)k+ j �

(
j + i
)
sk (1 + λ) j+i−1

k!�
(
j + i − k

)
B (i, n − i + 1)

(
n − i
j

)
.

Thus, the density function of the GT-G order statistics is a mixture of E-G densities. Based
on Equation (10), we can obtain some structural properties of Xi:n from those of the E-G
model.

The rth moment of Xi:n is given by

E
(
Xr
i:n

) =
∞∑
k=0

n−i∑
j=0

w∗
k

{
mE
[
Yr
kb+a( j+i)

]
− q E

[
Yr
b(k+1)+a( j+i)

]}
, (11)

whereYδ (as before) has the E-G density with power parameter δ.
The L-moments are analogous to the ordinary moments but can be estimated by linear

combinations of order statistics. Based upon the moments in equation (11), we can derive
explicit expressions for the L-moments of X as infinite weighted linear combinations of the
means of suitable E-G distributions. They are linear functions of expected order statistics
defined by

λr = 1
r

r−1∑
d=0

(−1)d
(
r − 1
d

)
E (Xr−d:r) , r ≥ 1.

6. Probability weightedmoments

The PWMs are expectations of certain functions of a random variable and they can be
defined for any randomvariablewhose ordinarymoments exist. Thesemoments can generally
be used for estimating parameters of a distribution whose inverse form cannot be expressed
explicitly.

The (s, r)th PWM of X following the GT-G family, say ρs,r, is formally defined by

ρs,r = E
{
Xs F(X )r

} =
∫ ∞

−∞
xs F(x)r f (x) dx.

From Equations (3) and (4), we can write

f (x) F(x)r =
∞∑
k=0

υk hbk+a(r+1) (x) {1 − d G (x)b},

where υk = (−1)k a�(r+1) sk (1+λ)r+1

k!�(r−k+1) (bk+a[r+1]) and, as before, hδ (x) = δg (x) G (x)δ−1.
Then, ρs,r can be expressed as

ρs,r =
∞∑
k=0

υk

∫ ∞

0
xs hbk+a(r+1) (x) {1 − d G (x)b}dx.

Finally, the (s, r)th PWM of X can be obtained from an infinite linear combination of E-G
moments given by

ρs,r =
∞∑
k=0

{
υk E[Ybk+a(r+1)] − υ�

k E[Yb(k+1)+a(r+1)]
}
,

where υ�
k = d [bk + a(r + 1)] υk/[b(k + 1) + a(r + 1)].
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7. Maximum-likelihood estimation

Several approaches for parameter estimation were proposed in the literature but the max-
imum likelihood method is the most commonly employed. The maxi-mum-likelihood esti-
mators (MLEs) enjoy desirable properties and can be used to obtain confidence intervals for
the model parameters. The normal approximation for these estimators in large samples can
be easily handled either analytically or numerically. Here, we consider the estimation of the
unknown parameters of the new family from complete samples only bymaximum likelihood.

LetX1, ...,Xn be a random sample from theGT-G family with parameters λ, a, b andϕ. Let
� =(λ, a, b,ϕᵀ)ᵀ be the p× 1 parameter vector. To obtain the MLE of �, the log-likelihood
function is given by

� = �(�) =
n∑

i=1

log g (xi; ϕ) + (a − 1)
n∑

i=1

logG (xi; ϕ) +
n∑

i=1

logQi,

where Qi = {a(1 + λ) − λ(a + b)G(xi; ϕ)b}.
Let Zi = G (xi; ϕ)b logG (xi; ϕ) and Si,k = G (xi; ϕ)b−1 (∂G (xi; ϕ) /∂ϕk) .

The components of the score vector, U(�) = ∂�

∂�
= ( ∂�

∂λ
, ∂�

∂a ,
∂�

∂b,
∂�

∂ϕk
)ᵀ =

(Uλ,Ua,Ub,Uϕk )
ᵀ, are

Uλ =
n∑

i=1

1
Qi

{
a − (a + b)G (xi; ϕ)b

}
,

Ua =
n∑

i=1

logG (xi; ϕ) +
n∑

i=1

1
Qi

{
(1 + λ) − λG (xi; ϕ)b

}
,

Ub =
n∑

i=1

−1
Qi

{
λ (a + b)Zi + λG (xi; ϕ)b

}
and

Uϕk =
n∑

i=1

1
g (xi; ϕ)

∂g (xi; ϕ)

∂ϕk
−

n∑
i=1

{
λb (a + b) Si,k

}
Qi

+ (a − 1)
n∑

i=1

1
G (x; ϕ)

∂G (xi; ϕ)

∂ϕk
.

Setting the non linear system of equations Uλ = Ua = Ub = 0 and Uϕk = 0 and solving
them simultaneously yields the MLE �̂ = (̂λ, â, b̂, ϕ̂ᵀ)ᵀ. For doing this, it is usually more
convenient to adopt non linear optimization methods such as the quasi-Newton algorithm
to maximize � numerically. For interval estimation of the parameters, we obtain the p× p
observed information matrix J(�) = { ∂2�

∂r ∂s } (for r, s = λ, a, b, ϕ), whose elements can be
computed numerically.

The standard likelihood regularity conditions are satisfied for the GT-G family. These con-
ditions are: (i) the support of the distribution does not depend on unknown parameters; (ii)
the parameter space is open and the log-likelihood function has a global maximum in it; (iii)
the third order log likelihood derivatives have finite expected values; (iv) the fourth order log
likelihood derivatives exist almost everywhere, and are continuous in an open neighborhood
that contains the true parameter value; (v) the expected information matrix positive definite
and finite. They hold for almost all distributions which satisfy (i). So, they are not restrictive.
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Under standard regularity conditions when n → ∞, the distribution of �̂ can be approx-
imated by a multivariate normal Np(0, J(�̂)−1) distribution to obtain confidence intervals
for the parameters. Here, J(�̂) is the total observed information matrix evaluated at �̂. The
method of the re-sampling bootstrap can be used for correcting the biases of the MLEs of
the model parameters. Good interval estimates may also be obtained using the bootstrap per-
centile method. The elements of J(�) are given in the Appendix. Improved MLEs can be
obtained for the new family using second-order bias corrections. However, these corrected
estimates depend on cumulants of log-likelihood derivatives and will be addressed in future
research.

8. Applications

In this section, we provide three applications to real data to illustrate the flexibility of
the GT-W, GT-LL, and GT-BrX models presented in Section 3. The goodness-of-fit statistics
for these models are compared with other competitive models and the MLEs of the model
parameters are determined.

8.1. The nicotine data

The first data set refers to nicotine measurements, made from several brands of cigarettes
in 1998, collected by the Federal Trade Commission which is an independent agency of
the US government, whose main mission is the promotion of consumer protection. The
report entitled tar, nicotine, and carbon monoxide of the smoke of 1206 varieties of domes-
tic cigarettes for the year of 1998 consists of the data sets and some information about the
source of the data, smokers behavior and beliefs about nicotine, tar and carbon monoxide
contents in cigarettes. The free form data set can be found at http://pw1.netcom.com/rda
vis2/smoke.html. We compare the fit of the GT-W distribution with those of other com-
petitive models, namely: the Kumaraswamy Weibull (Kw-W), McDonald Weibull (Mc-W),
gamma Weibull (GW), transmuted modified Weibull (TMW), beta Weibull (BW), modi-
fied beta Weibull (MBW) and Weibull (W) distributions with corresponding densities (for
x > 0):

� The Kw-W density (Cordeiro et al., 2010) given by
f (x) = abβαβxβ−1 e−(αx)β (1 − e−(αx)β )a−1{1 − [1 − e−(αx)β ]a}b−1.

� The Mc-W density (Cordeiro et al., 2014) given by
f (x) = βcαβ

B(a/c,b) x
β−1 e−(αx)β (1 − e−(αx)β )a−1{1 − (1 − e−(αx)β )c}b−1.

� The GW density (Provost et al., 2011) given by

f (x) = βαγ /β+1xβ+γ−1e−αxβ

�(1+γ /β)
.

� The TMW density (Khan and King, 2013) given by
f (x) = (α + γβxβ−1)e−(αx+γ xβ ){1 − λ + 2λe−(αx+γ xβ )}.

� The BW density (Lee et al., 2007) given by
f (x) = βαβ

B(a,b)x
β−1e−b(αx)β [1 − e−(αx)β ]a−1.

� The MBW density (Khan, 2015) given by
f (x) = βα−β ca

B(a/c,b) x
β−1 e−b( xα )β (1 − e−( xα )β )a−1

×{1 − (1 − c)(1 − e−( xα )β )c}−a−b.

The parameters of the above densities are all positive real numbers except for the TMW
distribution for which |λ| ≤ 1.
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8.2. The cancer patient data

The second data set on the remission times (inmonths) of a random sample of 128 bladder
cancer patients (Lee andWang, 2003) is given by 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63,
0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50,
2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81,
2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39,10.34, 14.83, 34.26, 0.90, 2.69,
4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75,
4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62,
7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13,
1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76,
12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69. For these data, we compare the fit of the GT-
LL distribution with those of the transmuted complementary Weibull geometric (TCWG),
transmuted Weibull Lomax (TWL), transmuted linear exponential (TLE) and exponentiated
transmuted generalized Rayleigh (ETGR) models (x > 0 for all of them).

� The TCWG density (Afify et al., 2014) given by

f (x) = αβγ (γ y)β−1 e−(γ y)β [α(1−λ)−(α−αλ−λ−1) e−(γ y)β ]

(α+(1−α) e−(γ y)β )3
.

� The TWL density (Afify et al., 2015) given by
f (x) = abα

β
(1 + x

β
)bα−1 exp{−a[(1 + x

β
)α − 1]b}

×[1 − (1 + x
β
)−α]b−1{1 − λ + 2λe−a{(1+ x

β
)α−1}b }.

� The TLE density (Tian et al., 2014) given by
f (x) = (α + γ x)[1 − e−(αx+ γ

2 x
2)]{1 − λ + 2λe−(αx+ γ

2 x
2)}.

� The ETGR density (Afify et al., 2015) given by
f (x) = 2αδβ2 x e−(βx)2 (1 − e−(βx)2 )αδ−1

×[1 + λ − 2λ(1 − e−(βx)2 )α] {1 + λ − λ(1 − e−(βx)2 )α}δ−1.

The parameters of the above densities are all positive real numbers except the parameter λ

where |λ| ≤ 1.

8.3. The gauge lengths

The third data set (gauge lengths of 20mm) (Kundu and Raqab, 2009) consists of 74 obser-
vations: 1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006,
2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301,
2.301, 2.359, 2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 2.566,
2.570, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818,
2.821, 2.848, 2.880, 2.809, 2.818, 2.821, 2.848, 2.880, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096,
3.128, 3.233, 3.433, 3.585, 3.585. For these data, we compare the fit of the GT-BrX distribution
with those of the exponentiated transmuted generalized Rayleigh (ETGR) (here we refer it by
ET-BrX), T-BrX, BrX and Rayleigh (R) models.

In order to compare the fitted models, we consider some goodness-of-fit measures
including the Akaike information criterion (AIC), consistent Akaike information crite-
rion (CAIC), Hannan–Quinn information criterion (HQIC), Bayesian information crite-
rion (BIC) and −2�̂, where �̂ is the maximized log-likelihood, AIC = −2�̂ + 2p, CAIC =
−2�̂ + 2pn/

(
n − p− 1

)
, HQIC = −2�̂ + 2p log

[
log (n)

]
and BIC = −2�̂ + p log (n), p is

the number of parameters and n is the sample size. Further, we adopt the Anderson-Darling
(A∗) and Cramér-von Mises (W ∗) statistics in order to compare the fits of the two new mod-
els with other nested and non nested models. The statistics are widely used to determine how
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Table . The statistics−2�̂, AIC, BIC, HQIC andCAIC for the nicotine data.

Goodness-of-fit criteria

Model −2�̂ AIC CAIC HQIC BIC W∗ A∗

GT-W 212.167 222.167 222.344 229.826 241.399 0.36131 1.96785
TMW 217.219 225.219 225.336 231.345 240.604 0.37111 2.07974
W 226.581 230.581 230.616 233.644 238.274 0.55744 3.20719
BW 225.173 233.173 233.29 239.30 248.559 0.49664 2.89774
Kw-W 255.044 263.044 263.162 269.171 278.43 0.99745 5.82509
Mc-W 302.714 312.714 312.89 320.372 331.946 1.61799 9.5949
GW 304.503 310.503 310.573 315.098 322.042 1.64383 9.7534
MBW 330.763 340.763 340.939 348.421 359.995 1.93343 11.52508

closely a specific cdf fits the empirical distribution of a given data set. These statistics are given
by

A∗ =
(

9
4n2

+ 3
4n

+ 1
){

n + 1
n

∑n

j=1

(
2 j − 1

)
log
[
zi
(
1 − zn− j+1

)]}
and

W ∗ =
(

1
2n

+ 1
){∑n

j=1

(
zi − 2 j − 1

2n

)2
+ 1

12n

}
,

Table . MLEs and their standard errors (in parentheses) for the nicotine data.

Model Estimates

GT-W α̂= 1.5074 β̂= 1.8743 λ̂= −0.8028
(0.293) (0.35) (0.082)
â= 0.854 b̂= 2.876

(0.31) (1.609)

TMW α̂= 0.3255 β̂= 2.5962 γ̂= 1.2691
(0.315) (0.244) (0.22)

λ̂= −0.7616
(0.242)

W α̂= 1.0477 β̂= 2.7208
(0.022) (0.114)

Kw-W α̂= 2.5072 β̂= 0.4839 â= 11.8142
(1.191) (0.076) (3.707)

b̂= 18.7953
(6.212)

Mc-W α̂= 1.3078 β̂= 0.5317 â= 16.858
(0.596) (0.079) (4.219)

b̂= 10.1043 ĉ= 1.1644
(3.995) (0.793)

GW α̂= 25.276088 β̂= 0.441494 γ̂= 9.708485
(6.912) (0.066) (1.337)

BW α̂= 0.6686 β̂= 3.1645 â= 0.7784
(0.578) (0.426) (0.163)

b̂= 3.0922
(8.174)

MBW α̂= 2.5098 β̂= 0.6265 â= 20.6338
(0.838) (0.062) (4.202)

b̂= 9.4085 ĉ= 3.6447
(3.163) (0.4)
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Table . The statistics−2�̂, AIC,BIC, HQIC, andCAIC for the cancer data.

Goodness-of-fit criteria

Model −2�̂ AIC CAIC HQIC BIC W∗ A∗

GT-LL 819.398 829.398 829.89 835.192 843.658 0.01641 0.10632
TCWG 821.995 829.995 830.32 834.63 841.403 0.04274 0.3059
TWL 820.402 830.402 830.894 836.196 844.662 0.03377 0.22162
TLE 826.971 832.971 833.165 836.448 841.528 0.06085 0.55402
ETGR 858.35 866.35 866.675 870.985 877.758 0.39794 2.36077

respectively, zi = F
(
y j
)
, where the y j’s values are the ordered observations. The smaller these

statistics are, the better the fit. Upper tail percentiles of the asymptotic distributions of these
goodness-of-fit statistics were tabulated in Nichols and Padgett (2006).

Tables 3, 5, and 7 list the values of −2�̂, AIC, CAIC, HQIC, BIC, W ∗, and A∗, whereas
the MLEs and their corresponding standard errors (in parentheses) of the model parameters
are given in Tables 4, 6, and 8. These numerical results are obtained using the MATH-CAD
PROGRAM.

In Table 3, we compare the fits of the GT-W model with the Kw-W, Mc-W, GW, TMW,
BW, MBW, and W models. We note that the GT-W model has the lowest values for the
−2�̂, AIC, CAIC, HQIC, BIC, W ∗, and A∗ statistics (for the nicotine data) among the fitted
models. So, theGT-Wmodel could be chosen as the bestmodel. In Table 5, we compare the fits

Table . MLEs and their standard errors (in parentheses) for the cancer data.

Model Estimates

GT-LL α̂= 9.229 β̂= 2.1723 λ̂= −0.00015
(1.908) (0.321) (0.048)

â= 0.5852 b̂= 0.0005
(0.16) (0.087)

TCWG α̂= 106.0694 β̂= 1.7115 λ̂= 0.2168
(124.8) (0.099) (0.61)

γ̂= 0.0095
(0.00651)

TWL α̂= 0.201 β̂= 5.495 λ̂= −0.0006
(0.18) (5.401) (0.505)

â= 10.5705 b̂= 1.5186
(21.344) (0.297)

TLE α̂= 0.0612 λ̂= 0.8568 γ̂= 3.0877 × 10−5

(0.01) (0.203) (6.819 × 10−4)

ETGR α̂= 7.3762 λ̂= 0.118 β̂= 0.0473
(5.389) (0.26) (3.965 × 10−3)

δ̂= 0.0494
(0.036)

Table . The statistics−2�̂, AIC, BIC, HQIC, andCAIC for the gauge lengths data.

Goodness-of-fit criteria

Model −2�̂ AIC CAIC HQIC BIC W∗ A∗

GT-BrX 108.055 118.055 118.937 122.65 129.575 0.10458 0.68807
ET-BrX 113.4 121.352 121.9 125.029 130.6 0.20714 1.3407
T-BrX 123.61 129.61 129.95 132.376 136.5 0.16923 1.28629
BrX 135.202 139.202 139.371 141.041 143.811 0.13403 0.86836
R 188.302 190.302 190.375 191.221 192.606 1.77111 32.95987
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Table . MLEs and their standard errors (in parentheses) for the gauge lengths data.

Model Estimates

GT-BrX α̂= 3.4900 β̂= 0.6615 λ̂= 0.0019
(2.084) (0.12) (0.048)

â= 2.5190 b̂= 0.0161
(1.503) (0.428)

ET-BrX α̂= 2.1214 β̂= 0.6985 λ̂= 0.3201
(0.315) (0.040) (0.228)

δ̂= 7.790
(1.727)

T-BrX α̂= 5.5052 β̂= 0.6245 λ̂= 0.3599
(0.776) (0.017) (0.253)

BrX α̂= 7.784 β̂= 0.6445
(1.625) (0.024)

R β̂= 0.3962
(0.023)

of the GT-LL model with the TCWG, TWL, TLE, and ETGRmodels. The figures in this table
reveal that the GT-LL model has the lowest values for −2�̂, AIC, CAIC, HQIC, BIC, W ∗,
and A∗ statistics (except for theCAICmodel) for the cancer data, among all fitted models. So,
the GT-LL model can be chosen as the best model. In Table 7, we compare the fits of the GT-
BrX model with the ET-BrX, T-BrX, BrX and R models. The results indicate that the GT-BrX
model has the lowest values for−2�̂, AIC, CAIC, HQIC, BIC, W ∗, andA∗ statistics (for the
gauge lengths data) among all fitted models. Therefore, the GT-BrX model can be chosen as
the best model. It is quite clear from the figures in Tables 3, 5, and 7 that the GT-W, GT-LL,
and GT-BrXmodels can provide the best fits to these data. Therefore, we prove that these new
distributions can be better models than other competitive lifetime models.

9. Conclusions

The idea of generating new extended models from classic ones has been of great inter-
est among researchers in the past decade. We present a new generalized transmuted-G (GT-
G) family of distributions, which extends the transmuted class (Shaw and Buckley, 2007) by
adding two extra shape parameters. Many well-known distributions emerge as special cases
of the proposed family by taking integer parameter values. We provide some mathematical
properties of the new family including explicit expansions for the ordinary and incomplete
moments, mean deviations, generating function, Rényi and q-entropies, order statistics and
probability weighted moments. The maximum likelihood estimation of the model parame-
ters is investigated and the observed information matrix is determined. By means of three
real data sets, we verify that special cases of the GT-G family can provide better fits than other
models generated from well-known families.
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Appendix

The elements of the observed matrix J(�) are given as follows:

Uλλ =
n∑

i=1

−1
Q2

i

{
a − (a + b)G (xi; ϕ)b

}2
,

Uλa =
n∑

i=1

1
Qi

{
1 − G (xi; ϕ)b

}−
n∑

i=1

1
Q2

i

{
a − (a + b)G (xi; ϕ)b

}
× {(1 + λ) − λG (xi; ϕ)b

}
,

Uλb =
n∑

i=1

−1
Qi

{
(a + b)Zi + G (xi; ϕ)b

}+
n∑

i=1

1
Q2

i

{
a − (a + b)G (xi; ϕ)b

}
× {λ (a + b)Zi + λG (xi; ϕ)b

}
,

Uλϕk = b (a + b)
n∑

i=1

−Si,k
Qi

+ λb (a + b)
n∑

i=1

Si,k
Q2

i

{
a − (a + b)G (xi; ϕ)b

}
,
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Uaa =
n∑

i=1

−1
Q2

i

{
(1 + λ) − λG (xi; ϕ)b

}2
,

Uab =
n∑

i=1

−λZi

Qi
+

n∑
i=1

(1 + λ) − λG (xi; ϕ)b

Q2
i

{
λ (a + b)Zi + λG (xi; ϕ)b

}
,

Uaϕk =
n∑

i=1

1
G (xi; ϕ)

∂G (xi; ϕ)

∂ϕk
− λb

n∑
i=1

Si,kQ−1
i

+ λb (a + b)
n∑

i=1

Si,k
Q2

i

{
(1 + λ) − λG (xi; ϕ)b

}
,

Ubb = λ(a + b)
n∑

i=1

−1
Qi

{[
logG (xi; ϕ)

]2 G (xi; ϕ)b
}

− 2λ
n∑

i=1

Zi

Qi

−
n∑

i=1

1
Q2

i

{
λ (a + b)Zi + λG (xi; ϕ)b

}2
,

Ubϕk = λ (a + b)
n∑

i=1

−1
Qi

∂Zi

∂ϕk
− λb

n∑
i=1

Q−1
i G (xi; ϕ)b−1 ∂G (xi; ϕ)

∂ϕk

− λ2b (a + b)2
n∑

i=1

1
Q2

i
ZiG (xi; ϕ)b−1 [∂G (xi; ϕ) /∂ϕk]

− (a + b) bλ2
n∑

i=1

1
Q2

i
G (xi; ϕ)2b−1 [∂G (xi; ϕ) /∂ϕk]

and

Uϕkϕk =
n∑
i=1

g (x; ϕ)−1 ∂2g (xi; ϕ)

∂ϕ2
k

−
n∑

i=1

[
∂g (xi; ϕ) /∂ϕk

]2
g (xi; ϕ)2

+ (a − 1)
n∑

i=1

G (x; ϕ)−1 ∂2G (xi; ϕ) /∂ϕ2
k

− λb (a + b)
n∑

i=1

G (xi; ϕ)b−1

Qi

∂2G (xi; ϕ)

∂ϕ2
k

− (a − 1)
n∑

i=1

G (x; ϕ)−2
[
∂G (xi; ϕ)

∂ϕk

]

− λb (a + b)
n∑

i=1

(b− 1)G (xi; ϕ)b−2

Qi

[
∂G (xi; ϕ)

∂ϕk

]

+
n∑
i=1

1
Q2

i

[
∂G (xi; ϕ)

∂ϕk

]2 {
λb (a + b) G (xi; ϕ)b−1}2 .
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