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Abstract. A new class of continuous distributions called the exponen-
tiated Weibull-H family is proposed and studied. The proposed class
extends the Weibull-H family of probability distributions introduced by
Bourguignon et al. (J Data Sci 12:53–68, 2014). Some special models of
the new family are presented. Its basic mathematical properties includ-
ing explicit expressions for the ordinary and incomplete moments, quan-
tile and generating function, Rényi and Shannon entropies, order sta-
tistics, and probability weighted moments are derived. The maximum-
likelihood method is adopted to estimate the model parameters and a
simulation study is performed. The flexibility of the generated family is
proved empirically by means of two applications to real data sets.
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1. Introduction

Determination of a probability distribution which should be adopted to make
inference about the data under study is a very important problem in statis-
tics. Because of this, considerable effort over the years has been expended in
the development of large classes of distributions along with relevant statisti-
cal methodologies. In fact, the statistics literature is filled with hundreds of
continuous univariate distributions and their successful applications. There
has been a recent renewed interest in generating wider classes of distributions
by adding one (or more) shape parameter(s) to a baseline distribution, which
makes the generated distribution more flexible, especially for studying tail
behavior. Modern computing technology has made many of these techniques
accessible even if analytical solutions are very complicated.

In the context of lifetime distributions with cumulative distribution
function (cdf) G(x), the most widely used generalization technique is the
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exponentiated-G (exp-G) family. Using this method, for ν > 0, the cdf of the
exp-G class is given by the following:

F (x; ν, ξ) = [G(x; ξ)]ν . (1.1)

In fact, the method for generating exp-G distributions can be traced
back to Lehmann [9]. This generalization technique received a great deal
of attention in the last two decades and more than thirty exp-G models
have already been published. Some notable examples include the exponenti-
ated Weibull by Mudholkar and Srivastava [12], exponentiated exponential
by Gupta et al. [7], exponentiated gamma, exponentiated Fréchet and expo-
nentiated Gumbel by Nadarajah and Kotz [13], exponentiated generalized
class of distributions by Cordeiro et al. [5], exponentiated generalized modi-
fied Weibull by Aryal et al. [2], and exponentiated Weibull–Pareto by Afify
et al. [1], among others. It has been shown that the exp-G models are more
flexible and have useful applications in several areas including reliability anal-
ysis, biomedical sciences, and environmental studies, among others. Since the
exponentiated generalization is more appealing than its classical counterpart,
we present the same technique for a class of models studied by Bourguignon
et al. [4].

Let h(x; ξ), H(x; ξ), and H(x; ξ), respectively, denote the probability
density function (pdf), cdf, and reliability function of a baseline model with
parameter vector ξ and consider the Weibull pdf ϕ(x) = abxb−1 exp(−axb)
(for x > 0) with parameters a > 0 and b > 0. Then, the cdf of the Weibull-H
class is given by the following:

G(x; a, b) =
∫ H(x;ξ)

H(x;ξ)

0

ϕ(y)dy = 1 − exp

[
−a

(
H (x; ξ)
H(x; ξ)

)b
]

. (1.2)

Hence, the pdf of the Weibull-H class reduces to

g(x; a, b) = ab h(x; ξ)
H(x; ξ)b−1

H(x; ξ)b+1
exp

[
−a

(
H(x; ξ)
H(x; ξ)

)b
]

. (1.3)

The rest of the paper is outlined as follows. In Sect. 2, we define the
exponentiated Weibull-H (EW-H) family of distributions. Five of its special
models and some plots of their pdfs and hazard rate functions (hrfs) are
presented in Sect. 3. In Sect. 4, we derive a useful linear representation for
the EW-H family. In Sect. 5, we obtain some basic mathematical quantities for
the new family including ordinary and incomplete moments, mean deviations,
quantile function (qf), moment generating function (mgf), and Rényi and
q-entropies. Order statistics and their moments are determined in Sect. 6.
In Sect. 7, we obtain the probability weighted moments (PWMs). We use
maximum likelihood to estimate the model parameters in Sect. 8. In Sect. 9,
we perform some simulations to investigate the accuracy and reliability of
the maximum-likelihood estimators (MLEs). In Sect. 10, two applications to
real data sets prove empirically the flexibility of the new family. Finally, some
concluding remarks are offered in Sect. 11.
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2. The EW-H family

The proposed family is most conveniently specified in terms of the exponenti-
ated generator applied to the Weibull-H class. By inserting (1.2) in equation
(1.1), the cdf of the exponentiated Weibull-H (EW-H) family is given by

F (x; ν, a, b, ξ) =

{
1 − exp

[
−a

(
H (x; ξ)
H(x; ξ)

)b
]}ν

. (2.1)

Therefore, the pdf of the EW-H family reduces to

f(x; ν, a, b, ξ) = abνh(x; ξ)
H(x; ξ)b−1

H(x; ξ)b+1
exp

[
−a

(
H(x; ξ)
H(x; ξ)

)b
]

×
{

1 − exp

[
−a

(
H (x; ξ)
H(x; ξ)

)b
]}ν−1

. (2.2)

The additional parameter ν can allow us to study the tail behavior of
the density (2.2) with greater flexibility. Furthermore, the EW-H family due
to its flexibility in accommodating all forms of the hrf (increasing, decreasing,
constant, bathtub, and upside-down bathtub), as shown in Figs. 1b, 2b, 3b,
4b, and 5b, becomes an important family to be used in several applications
to real data. A random variable X having pdf (2.2) is denoted by X ∼EW-
H(ν, a, b, ξ). Some special cases of the EW-H family are listed in Table 1.

In Table 1, the H-model refers to the distribution with cdf M(x, ξ) =
1 − exp

(
−H(x;ξ)

H̄(x;ξ)

)
. This is an exponential distribution of the odds ratio of a

continuous random variable whose cdf is given by H(x; ξ).

3. Special Models

In this section, we present five special models of the EW-H family. The pdf
(2.2) will be most tractable when the cdf H(x; ξ) and pdf h(x; ξ) have simple
analytic expressions. These sub-models generalize several important distri-
butions in the literature. We provide five special models of this family by
taking the following baseline distributions: Weibull (W), log-logistic (LL),
Fréchet (Fr), Lindely (Li), and Gamma (Ga). The pdfs and cdfs (all defined
for x > 0) of these baseline models are listed in Table 2. Note that Γ(.) and

Table 1. Sub-models of the EW-H family

Reduced model ν a b Author

W-H family 1 a b Bourguignon et al. [4]
BX-H family ν 1 2 Yousof et al. [18]
E-H family 1 a 1 –
EE-H family ν a 1 Tahir et al. [19]
H-model 1 1 1 –
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Table 2. Pdf and cdf of baseline models of EW-H family

Model pdf: h(x; ξ) cdf: H(x; ξ)

W βαβxβ−1 exp[−(αx)
β

] 1 − exp[−(αx)
β

]

LL βα−βxβ−1
[
1 +
(

x
α

)β]−2

1 −
[
1 +
(

x
α

)β]−1

Fr βαβx−(β+1) exp
[
− (α

x

)β
]

exp
[
− (α

x

)β
]

Li α2

1+α (1 + x) exp(−αx) 1 − 1+α+αx
1+α exp(−αx)

Ga 1
Γ(α)βα xα−1 exp

(
− x

β

)
1

Γ(α)γ
(
α, x

β

)

γ(., .) in Table 2 denote the gamma function and incomplete gamma function,
respectively.

3.1. The EWW Distribution

The cdf and pdf of the EWW distribution are given, respectively, by

F (x) = (1 − exp{−a[exp(αx)
β − 1]b})ν

and

f(x) = abνβαβxβ−1 exp{b(αx)
β − a[exp(αx)

β − 1]b}
×[1 − exp{−(αx)

β }]b−1 (1 − exp{−a[exp(αx)
β − 1]b})ν−1.

For ν = 1, the EWW distribution reduces to the Weibull-W (WW) distri-
bution. For β = 1 and β = 2, we obtain the EW-exponential (EWE) and
EW-Rayleigh (EWR) distributions, respectively. Some plots of the pdf and
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Figure 1. a Probability density function of the EWW dis-
tribution; b hazard rate functions of the EWW distribution
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hrf of the EWW distribution are displayed in Fig. 1 for selected parameter
values.

3.2. The EWLL Distribution

The cdf and pdf of the EWLL distribution are given, respectively, by

F (x) =
(

1 − exp
[
−a
(x

α

)bβ
])ν

and

f(x) =
abνβ

α

(x

α

)bβ−1

exp
[
−a
(x

α

)bβ
](

1 − exp
[
−a
(x

α

)bβ
])ν−1

.

For ν = 1, the EWLL model reduces to the W-log-logistic (WLL) distribu-
tion. For b = 1, we obtain the ELL model. Some plots of the pdf and hrf of
the EWLL distribution for selected parameter values are displayed in Fig. 2.

3.3. The EWFr Distribution

The cdf and pdf of the EWFr distribution are, respectively, given by

F (x) =

(
1 − exp

{
−a

[
exp
(α

x

)β

− 1
]−b
})ν

and

f(x) = abνβαβ

exp
[(

α
x

)β − a
(
exp
(

α
x

)β − 1
)−b
]

xβ+1
(
exp
(

α
x

)β − 1
)b+1

×
(

1 − exp

{
−a

[
exp
(α

x

)β

− 1
]−b
})ν−1

.
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Figure 2. a Probability density function of the EWLL dis-
tribution; b hazard rate functions of the EWLL distribution
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For ν = 1, the EWFr distribution becomes the W-Fr distribution. For β = 1
and β = 2, we obtain the EW-inverse exponential (EWIE) and EW-inverse
Rayleigh (EWIR) distributions, respectively. Plots of the pdf and hrf of the
EWFr distribution are displayed in Fig. 3 for some parameter values.

3.4. The EWLi Distribution

The cdf and pdf of the EWLi distribution are given, respectively, by

F (x) =

(
1 − exp

{
−a

[
(1 + α) exp (αx)

1 + α + αx
− 1
]b
})ν

and

f(x) =
abν(1 + α)α2(1 + x) exp(αx)

(1 + α + αx)2
exp

{
−a

[
(1 + α) exp (αx)

1 + α + αx
− 1
]b
}

×
{

(1 + α) exp(αx)
1 + α + αx

−1
}b−1

(
1− exp

{
−a

[
(1+α) exp (αx)

1 + α + αx
−1
]b
})ν−1

.

For ν = 1, the EWLi model reduces to the WLi distribution. For b =
1, we obtain the ELi model. Some plots of the pdf and hrf of the EWLi
distribution are displayed in Fig. 4 for some parameter values.

3.5. The EWGa Distribution

The cdf and pdf of the EWGa distribution are given, respectively, by

F (x) =

⎛
⎜⎝1 − exp

⎧⎪⎨
⎪⎩−a

⎡
⎣γ
(
α, x

β

)

Γ
(
α, x

β

)
⎤
⎦

b
⎫⎪⎬
⎪⎭

⎞
⎟⎠

ν
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Figure 3. a Probability density function of the EWFr dis-
tribution; b hazard rate functions of the EWFr distribution
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Figure 4. a Probability density function of the EWLi dis-
tribution; b hazard rate functions of the EWLi distribution
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Figure 5. a Probability density function of the EWGa dis-
tribution; b hazard rate functions of the EWGa distribution

and

f(x) =
abνΓ(α)

βα
xα−1 exp

(
−x

β

) [γ (α, x
β

)]b−1

[
Γ
(
α, x

β

)]b+1

× exp

⎧⎪⎨
⎪⎩−a

⎡
⎣γ
(
α, x

β

)

Γ
(
α, x

β

)
⎤
⎦

b
⎫⎪⎬
⎪⎭

⎛
⎜⎝1 − exp

⎧⎪⎨
⎪⎩−a

⎡
⎣γ
(
α, x

β

)

Γ
(
α, x

β

)
⎤
⎦

b
⎫⎪⎬
⎪⎭

⎞
⎟⎠

ν−1

.

For ν = 1, the EWGa model reduces to the WGa distribution. Some
plots of the pdf and hrf of the EWGa distribution are displayed in Fig. 5 for
some parameter values.



 155 Page 8 of 22 G. M. Cordeiro et al. MJOM

4. Linear Representation

In this section, we provide a useful linear representation for the EW-H density
function. If |z| < 1 and b > 0 is a real non-integer, the power series holds

(1 − z)b−1 =
∞∑

j=0

(−1)j Γ(b)
j! Γ(b − j)

zj . (4.1)

Applying (4.1) to the last term in (2.2) gives

f(x; ν, a, b, ξ) = abν h(x; ξ)
(

H(x; ξ)b−1

H(x; ξ)b+1

)

×
∞∑

i=0

(−1)i Γ (ν)
i! Γ (ν − i)

exp

[
−a (i + 1)

(
H(x; ξ)
H(x; ξ)

)b
]

︸ ︷︷ ︸
Ai

. (4.2)

Expanding the quantity Ai in power series, we can write

Ai =
∞∑

k=0

(−1)kak(i + 1)k

k!
H(x; ξ)kb

H(x; ξ)kb
.

Inserting the above expression of Ai in (4.2), the EW-H density reduces to

f(x; ν, a, b, ξ) = h(x; ξ)
∞∑

i,k=0

(−1)k+i νbak+1Γ(ν)(i + 1)k

i!k! Γ(ν − i)
H(x; ξ)(k+1)b−1

H(x; ξ)(k+1)b+1
.

(4.3)
Using the generalized binomial expansion to [1 − H(x; ξ)]−[(k+1)b+1], we can
write

[1 − H(x; ξ)]−[(k+1)b+1] =
∞∑

j=0

Γ([k + 1]b + j + 1)
j!Γ([k + 1]b + 1)

H(x; ξ)j . (4.4)

Inserting (4.4) in (4.3), the EW-H density can be expressed as an infinite
linear combination of exp-H density functions

f(x; ν, a, b, ξ) =
∞∑

k,j=0

υk,j π(k+1)b+j(x), (4.5)

where πδ(x) = δh(x; ξ)H(x; ξ)δ−1 is the exp-H pdf with power parameter δ
and

υk,j =
∞∑

i=0

(−1)k+i νbak+1(i + 1)kΓ(ν)Γ([k + 1]b + j + 1)
i! k! j! [(k + 1)b + j]Γ(ν − i)Γ([k + 1]b + 1)

.

Equation (4.5) reveals that the density of X can be expressed as a linear
combination of exp-H densities. Therefore, several mathematical properties
of the new family can be obtained by knowing those of the exp-H distribution.

Similarly, the cdf of the EW-H family can also be expressed as a linear
combination of exp-H cdfs given by

F (x; ν, a, b, ξ) =
∞∑

k,j=0

υk,j Π(k+1)b+j(x),
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where Π(k+1)b+j(x) is the exp-H cdf with power parameter (k + 1)b + j.

5. Mathematical Properties

The formulae derived in the paper can be handled in most symbolic compu-
tation software platforms, for example, Mathematica and Maple because of
their ability to deal with complex expressions. Established explicit expres-
sions to determine statistical measures can be more efficient than computing
them directly by numerical integration.

5.1. Moments

The rth moment of X, say μ′
r, follows from Eq. (4.5) as

μ′
r = E(Xr) =

∞∑
k,j=0

υk,j E(Y r
(k+1)b+j),

where Y(k+1)b+j denotes the exp-H random variable with power parameter
(k + 1)b + j.

The nth central moment of X, say Mn, is given by

Mn = E(X − μ′
1)

n =
n∑

r=0

(
n

r

)
(−μ′

1)
n−r E(Xr)

=
n∑

r=0

∞∑
k,j=0

(
n

r

)
(−μ′

1)
n−r υk,j E(Y r

(k+1)b+j).

5.2. Quantile and Generating Functions

The qf of X is determined by inverting (2.1). We have

Q(u) = F−1(u) = H−1

⎛
⎝
{

1 +
[
−1

a
log
(
1 − u1/ν

)]−1/b
}−1

⎞
⎠ , 0 < u < 1.

Next, we provide two formulae for the mgf MX(t) = E(et X) of X. Clearly,
the first one can follow from equation (4.5) as

MX(t) =
∞∑

k,j=0

υk,j M(k+1)b+j(t),

where M(k+1)b+j(t) is the mgf of Y(k+1)b+j (for k, j ≥ 0). Hence, MX(t) can
be easily obtained from the exp-H generating function.

A second formula for MX(t) follows from (4.5) as

MX(t) =
∞∑

k,j=0

υk,j τ(t, [k + 1]b + j + 1),

where τ(t, p) =
∫ 1

0
exp[t QH(u)]updu can be evaluated numerically from the

baseline qf, i.e., QH(u) = H−1(u).
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5.3. Incomplete Moments

The main applications of the first incomplete moment are related to the
mean deviations and Bonferroni and Lorenz curves. These curves are very
useful in economics, reliability, demography, insurance, and medicine. The
sth incomplete moment, say ϕs(t), of X can be expressed from (4.5) as

ϕs(t) =
∫ t

−∞
xs f(x)dx =

∞∑
k=0

υk,j

∫ t

−∞
xs π(k+1)b+j(x)dx. (5.1)

Clearly, the integral in Eq. (5.1) denotes the sth incomplete moment of
Y(k+1)b+j .

The mean deviations about the mean [δ1 = E(|X − μ′
1|)] and about

the median [δ2 = E(|X − M |)] of X are given by δ1 = 2μ
′
1F (μ′

1) − 2ϕ1(μ′
1)

and δ2 = μ′
1 − 2ϕ1(M), respectively, where μ′

1 = E(X), M = Median(X) =
Q(0.5) is the median, F (μ′

1) is easily evaluated from (2.1), and ϕ1 (t) is the
first incomplete moment given by (5.1) with s = 1.
Now, we provide two ways to determine δ1 and δ2. First, a general equation
for ϕ1(t) can be obtained from Eq. (4.5) as

ϕ1 (t) =
∞∑

k=0

υk,j J(k+1)b+j(t),

where J(k+1)b+j(t) =
∫ t

−∞ xπ(k+1)b+j(x)dx is the first incomplete moment
of the exp-H distribution.
A second general formula for ϕ1(t) is given by

ϕ1(t) =
∞∑

k,j=0

υk,j ω(k+1)b+j(t),

where ω(k+1)b+j(t) = [(k+1)b+j]
∫H(t)

0
QH(u)u(k+1)b+jdu can be evaluated

numerically. These equations for ϕ1(t) can be applied to construct Bonferroni
and Lorenz curves defined, for a given probability π, by B(π) = ϕ1(q)/(πμ′

1)
and L(π) = ϕ1(q)/μ′

1, respectively, where q = Q(π) is the qf of X at π.

5.4. Entropies

The Rényi entropy of a random variable X represents a measure of variation
of the uncertainty. It is defined by

Iθ(X) =
1

(1 − θ)
log
(∫ ∞

−∞
f(x)θdx

)
, θ > 0 and θ �= 1.

Using the pdf (2.2), we can obtain after some algebra

f(x)θ =
∞∑

k,j=0

τk,j h(x)θ H(x)bk+j+(b−1)θ,

where

τk,j =
∞∑

i=0

(−1)i+kak+θ(νb)θ(θ + i)kΓ([ν − 1]θ + 1)Γ(bk + [b + 1]θ + j)
i!k!j!Γ(bk + [b + 1]θ)Γ([ν − 1]θ − i + 1)

.
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Then, the Rényi entropy of the EW-H family is given by

Iθ(X) =
1

(1 − θ)
log

⎧⎨
⎩

∞∑
k,j=0

τk,j

∫ ∞

−∞
h(x)θH(x)bk+j+(b−1)θdx

⎫⎬
⎭ .

6. Order Statistics

Order statistics make their appearance in many areas of statistical theory
and practice. Let X1, . . . , Xn be a random sample from the EW-H family of
distributions. The pdf of the ith order statistic, say Xi:n, can be expressed
as

fi:n(x) =
f(x)

B(i, n − i + 1)

n−i∑
j=0

(−1)j

(
n − i

j

)
F j+i−1(x), (6.1)

where B(·, ·) is the beta function. Based on Eqs. (2.1) and (2.2), we have

f(x)F j+i−1(x) = νab h(x)
H(x)b−1

H(x)b+1
exp

[
−a

(
H(x)
H(x)

)b
]

×
{

1 − exp

[
−a

(
H (x)
H(x)

)b
]}ν(j+i)−1

.

Following the same steps of the linear representation (4.5), we obtain

f(x)F j+i−1(x) = h(x)
∞∑

l,k=0

(−1)l+kνbak+1(1 + l)kΓ([j + i]ν)
l! k! Γ([j + i]ν − l)

H(x)(k+1)b−1

H(x)(k+1)b+1
.

Then

f(x)F j+i−1(x) =
∞∑

k,m=0

t
(j)
k,m π(k+1)b+m(x), (6.2)

where

t
(j)
k,m =

∞∑
l=0

(−1)l+kνb ak+1 (1 + l)kΓ([j + i]ν) Γ([k + 1]b + 1 + m)
l! k!m! [(k + 1)b + m] Γ([j + i]ν − l) Γ([k + 1]b + 1)

.

Substituting (6.2) in Eq. (6.1), the pdf of Xi:n can be expressed as

fi:n(x) =
1

B(i, n − i + 1)

∞∑
k,m=0

qk,m π(k+1)b+m(x),

where π(k+1)b+m(x) is the exp-H density with power parameter (k + 1)b + m

and qk,m =
∑n−i

j=0 (−1)j (n−i
j

)
t
(j)
k,m. The density function of the EW-H order

statistics is a linear combination of exp-H densities. Based on the last equa-
tion, we note that the main properties of Xi:n follow from those properties
of Yk+1. For example, the moments of Xi:n are given by

E(Xs
i:n) =

1
B(i, n − i + 1)

∞∑
k,m=0

qk,m E(Y s
(k+1)b+m). (6.3)
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The L-moments are analogous to the ordinary moments but can be
estimated by linear combinations of order statistics. They exist whenever
the mean of the distribution exists, even though some higher moments may
not exist, and are relatively robust to the effects of outliers. Based upon the
moments in Eq. (6.3), we can derive explicit expressions for the L-moments
of X as infinite weighted linear combinations of the means of suitable EW-H
order statistics.

7. Probability Weighted Moments

The PWMs are expectations of certain functions of a random variable and
can be defined for any random variable whose ordinary moments exist. The
(s, r)th PWM of the EW-H distribution, say ρs,r, can be formally defined by

ρs,r = E{Xs F (X)r} =
∫ ∞

−∞
xs F (x)r f(x)dx.

From Eqs. (2.1) and (2.2), we can write

f(x)F (X)r =
∞∑

k,j=0

d
(r)
k,j π(k+1)b+j(x),

where

d
(r)
k,j =

∞∑
i=0

(−1)k+iν b ak+1(i + 1)kΓ([r + 1]ν)Γ([k + 1]b + j + 1)
i!k! j! [(k + 1)b + j]Γ([r + 1]ν − i)Γ([k + 1]b + 1)

.

Then, ρs,r can be expressed as

ρs,r =
∞∑

k,j=0

d
(r)
k,j

∫ ∞

−∞
xs π(k+1)b+j , (x)dx.

Finally, the (s, r)th PWM of X can be obtained from an infinite linear com-
bination of exp-H moments given by

ρs,r =
∞∑

k,j=0

d
(r)
k,j E(Y s

(k+1)b+j).

8. Parameter Estimation

Several approaches for parameter estimation were proposed in the literature,
but the maximum-likelihood method is the most commonly employed. The
MLEs enjoy desirable properties and can be used for constructing confidence
intervals for the model parameters and also for hypothesis testing. There-
fore, we consider the estimation of the unknown parameters for this family
from complete samples only by maximum likelihood. Let x1, . . . , xn be a
random sample from the EW-H family with parameters ν, a, b and ξ. Let
θ =(ν, a, b, ξᵀ)ᵀ be the (p × 1) parameter vector. The standard regularity
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conditions are satisfied for all distributions other than the one whose sup-
port depends on an unknown parameter. The log-likelihood function � for
the EW-H distribution is given by

� = n(log ν + log a + log b) +
n∑

i=1

log h(xi; ξ) + (b − 1)
n∑

i=1

log H(xi; ξ)

−(b + 1)
n∑

i=1

log H(xi; ξ) − a
n∑

i=1

sb
i + (ν − 1)

n∑
i=1

log qi, (8.1)

where si = H(xi; ξ)/H(xi; ξ) and qi = 1 − exp(−asb
i ) (for i = 1, . . . , n).

Equation (8.1) can be maximized either directly using the R (optim function),
SAS (PROC NLMIXED), Ox program (MaxBFGS sub-routine), and MATH-CAD pro-
gram or by solving the nonlinear likelihood equations obtained by differenti-
ating (8.1).

The score vector components, say U(θ) = ∂�
∂θ = ( ∂�

∂ν , ∂�
∂a , ∂�

∂b ,
∂�
∂ ξ )ᵀ, are

given by

Uν =
n

ν
+

n∑
i=1

log[1 − exp(−asb
i )],

Ua =
n

a
−

n∑
i=1

sb
i + (ν − 1)

n∑
i=1

exp(−asb
i )s

b
i

qi
,

Ub =
n

b
+

n∑
i=1

log H(xi; ξ) −
n∑

i=1

log H(xi; ξ)

−a
n∑

i=1

sb
i log si + a(ν − 1)

n∑
i=1

exp(−asb
i )s

b
i log si

qi

and

Uξk
=

n∑
i=1

h′
ξk

(xi; ξ)
h(xi; ξ)

+ (b − 1)
n∑

i=1

H ′
ξk

(xi; ξ)
H(xi; ξ)

− (b + 1)
n∑

i=1

H
′
ξk

(xi; ξ)

H(xi; ξ)

−ab

n∑
i=1

sb−1
i

(
∂si

∂ξk

)
+ (ν − 1)

n∑
i=1

1
qi

(
∂qi

∂ξk

)
,

where h′
ξk

(xi; ξ) = ∂h(xi; ξ)/∂ξk, H ′
ξk

(xi; ξ) = ∂H(xi; ξ)/∂ξk and H
′
ξk

(xi; ξ)
= ∂H(xi; ξ)/∂ξk.

Setting the non-linear system of equations Uν = Ua = Ub = Uξk
= 0

and solving them simultaneously yield the MLE θ̂ = (ν̂, â, b̂, ξ̂
ᵀ
)ᵀ of θ.

These equations can be solved numerically using iterative methods such as
the Newton–Raphson type algorithms. For interval estimation of the model
parameters, we require the observed information matrix J(θ), which can be
obtained from the authors upon request. Under standard regularity condi-
tions when n → ∞, the distribution of θ̂ can be approximated by a multivari-
ate normal Np(0, J(θ̂)−1) distribution to construct approximate confidence
intervals for the parameters. Here, J(θ̂) is the total observed information
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Table 3. Empirical means and the RMSEs of the EWLL
distribution for a = 1, b = 2, α = 2, β = 1, and ν = 2

n â b̂ α̂ β̂ ν̂

100 1.08803 2.01018 2.04639 1.04040 2.54616
(0.36499) (0.15986) (0.27339) (0.24770) (2.14516)

200 1.05870 1.99945 2.02488 1.01272 2.24989
(0.21298) (0.09229) (0.17682) (0.16108) (0.99694)

300 1.04556 1.99769 2.02496 1.01177 2.15514
(0.18393) (0.07653) (0.14252) (0.13042) (0.77584)

400 1.03653 1.99893 2.02017 1.00688 2.11859
(0.14742) (0.06459) (0.13414) (0.11176) (0.64036)

500 1.03846 1.99710 2.02366 1.00582 2.09826
(0.14121) (0.06329) (0.12053) (0.10235) (0.59191)

1000 1.02154 1.99922 2.01458 1.00254 2.04608
(0.09039) (0.03549) (0.07877) (0.06788) (0.35141)

matrix evaluated at θ̂. Large sample theory for these estimators delivers
simple approximations that work well in finite samples. The normal approxi-
mation for the MLEs is easily handled numerically. Likelihood ratio tests can
be performed for the proposed family in the usual way.

9. Simulation Study

In this section, we present some simulations for different sample sizes to assess
the accuracy of the MLEs. For illustrative purposes, we will choose the EWLL
distribution. An ideal technique for simulating from the EWLL distribution
is the inversion method. We can simulate X by

X = α

[
−1

a
log(1 − U1/ν)

]1/(bβ)

,

where U is a uniform random number in (0, 1). For selected combinations of
a, b, α, β and ν, we generate samples of sizes n = 100, 200, 300, 400, 500, and
1, 000 from the EWLL distribution. We repeat the simulations N = 1, 000
times and evaluate the mean estimates and the root-mean-square errors
(RMSEs). The empirical results obtained using the statistical computing
software R are given in Tables 3 and 4. It can be noted that as sample
size increases, the mean square error decreases. Therefore, the maximum-
likelihood method works very well to estimate the model parameters of the
EWLL distribution.

10. Applications

In this section, we prove empirically the flexibility of the EWLi and EWFr
models presented in Sect. 3 by means of two applications to real data. The
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Table 4. Empirical means and the RMSEs of the EWLL
distribution for a = 2, b = 1, α = 2, β = 2 and ν = 1

n â b̂ α̂ β̂ ν̂

100 2.05735 1.07065 1.99478 2.02222 1.14787
(0.18058) (0.27945) (0.20209) (0.18293) (0.88286)

200 2.03073 1.02989 2.00458 2.01052 1.04472
(0.11937) (0.16233) (0.12749) (0.09871) (0.35811)

300 2.02832 1.02531 2.01255 2.00729 1.01846
(0.10232) (0.12902) (0.10713) (0.07846) (0.28124)

400 2.03168 1.01404 2.00601 2.00005 1.02899
(0.10686) (0.10969) (0.08896) (0.06778) (0.24692)

500 2.02512 1.01295 2.00914 2.00229 1.01726
(0.08558) (0.09685) (0.08227) (0.05829) (0.21188)

1000 2.02019 1.00494 2.00554 2.00007 1.01158
(0.06810) (0.06733) (0.05644) (0.03805) (0.14809)

MLEs of the model parameters and some goodness-of-fit statistics for the
fitted models are computed using MATH-CAD.

10.1. The Cancer Patient Data

The first data set refers to the remission times (in months) of a random
sample of 128 bladder cancer patients provided in Lee and Wang [8]. We
compare the fits to these data of the EWLi, WLi, EELi, extended Lindley
(ELi)(Bakouch et al. [3]), power Lindley (PLi) (Ghitnay et al. [6]), and Lind-
ley (Li) distributions. Note that the pdfs of the ELi and PLi distributions
are, respectively, given by

ELi : f(x) =
α(1 + α + αx)ν−1

(1 + α)ν
exp[−(αx)β ][β(1 + α + αx)(αx)β−1 − ν];

PLi : f(x) =
βα2

(1 + α)
xβ−1(1 + xβ) exp(−αxβ).

The parameters of the above densities are all positive real numbers
except ν ∈ R

− ∪ {0, 1} for the ELi model.

10.2. Breaking Stress of Carbon Fibre Data

The second data set consists of 100 observations from Nichols and Padgett
[16] on breaking stress of carbon fibre (in Gba). Here, we use these data
to compare the fit of the EWFr model with those of the following models:
Kumaraswamy Fréchet (KwFr) (Mead and Abd-Eltawab [11]), exponentiated
Fréchet (EFr) (Nadarajah and Kotz [15]), beta Fréchet (BFr) (Nadarajah and
Gupta [14]), gamma extended Fréchet (GEFr)(Silva et al. [17]), transmuted
Fréchet (TFr) (Mahmoud and Mandouh [10]), and Fréchet (Fr) distributions
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with corresponding densities (for x > 0):

KwFr : f(x) = abβαβ x−(β+1) exp
[
−a
(α

x

)β
]{

1 − exp
[
−a
(α

x

)β
]}b−1

;

EFr : f(x) = aβαβ x−(β+1) exp
[
−
(α

x

)β
] {

1 − exp
[
−
(α

x

)β
]}a−1

;

BFr : f(x) =
βαβ

B (a, b)
x−(β+1) exp

[
−a
(α

x

)β
] {

1 − exp
[
−
(α

x

)β
]}b−1

;

GEFr : f(x) =
aβαβ

ν (b)
x−(β+1) exp

[
−
(α

x

)β
]{

1 − exp
[
−
(α

x

)β
]}a−1

×
[
− log

{
1 − exp

[
−
(α

x

)β
]}a]b−1

;

TFr : f(x) = βαβx−(β+1) exp
[
−
(α

x

)β
]{

(a + 1) − 2a exp
[
−
(α

x

)β
]}

.

The parameters of the above densities are all positive real numbers except
|a| ≤ 1 for the TFr distribution. To compare the distributions, we consider the
goodness-of-fit statistics including the Akaike information criterion (AIC),
consistent Akaike information criterion (CAIC), Bayesian information crite-
rion (BIC), Hannan–Quinn information criterion (HQIC), minus twice max-
imized log-likelihood under the model (−2�̂), Anderson–Darling (A∗), and
Cramér–Von Mises (W ∗) statistics. They are given by

AIC = −2�̂ + 2p, BIC = −2�̂ + p log(n),

HQIC = −2�̂ + 2p log[log(n)], CAIC = −2�̂ + 2pn/(n − p − 1),

A∗ =
(

9
4n2

+
3
4n

+ 1
)⎧⎨
⎩n +

1
n

n∑
j=1

(2j − 1) log [zi (1 − zn−j+1)]

⎫⎬
⎭

and

W ∗ =
(

1
2n

+ 1
)⎡
⎣ n∑

j=1

(
zi − 2j − 1

2n

)2

+
1

12n

⎤
⎦ ,

respectively, where zi = F (y(i)), p is the number of parameters, n is the sam-
ple size, and the values y(i)’s are the ordered observations. The smaller these
statistics are, the better the fit is. Upper tail percentiles of the asymptotic
distributions are tabulated in Nichols and Padgett [16]. The MLEs and their
corresponding standard errors (in parentheses) of the model parameters for
cancer patient data are given in Table 5.

In Table 6, we compare the fits of the EWLi, PLi, ELi, EELi, WLi, and
Li distributions. The numerical values in Table 6 indicate that the EWLi
model has the lowest values for the −2�̂, AIC, CAIC, HQIC, BIC, W ∗, and
A∗ statistics (for cancer data) among the fitted models. Therefore, the EWLi
model could be chosen as the best fitted model.
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Table 5. MLEs and their standard errors (in parentheses)
for cancer patient data

Model Estimates

EWLi α̂ = 0.0161 ν̂ = 5.9046 â = 9.7534 b̂ = 0.2941
(0.026) (3.634) (8.531) (0.069)

ELi α̂ = 0.0444 ν̂ = −2.0373 β̂ = 1.2244
(0.059) (4.248) (0.271)

EELi α̂ = 0.019 ν̂ = 0.4692 â = 17.918
(0.0052) (0.05) (9.5)

WLi α̂ = 0.0199 â = 10.6812 b̂ = 0.6092
(0.009117) (5.714) (0.039)

PLi α̂ = 0.2944 β̂ = 0.8301
(0.037) (0.047)

Li α̂ = 0.1961
(0.012)

Table 6. Goodness-of-fit statistics for cancer data

Model −2�̂ AIC CAIC HQIC BIC W ∗ A∗

EWLi 819.700 827.700 828.025 832.335 839.108 0.02875 0.18791
PLi 826.697 830.697 830.793 833.015 836.401 0.10248 0.62961
ELi 827.124 833.124 833.317 836.6 841.68 0.0549 0.47177
WLi 834.476 840.476 840.67 843.953 849.032 0.16488 1.03148
Li 839.072 841.072 841.103 842.23 843.924 0.36345 2.26142
EELi 860.315 866.315 866.509 869.792 874.871 0.44481 2.63767

The MLEs and their corresponding standard errors (in parentheses) of
the model parameters for breaking stress of carbon fibre data are listed in
Table 7.

In Table 8, we provide the fit statistics of the EWFr model with those
fits of the KwFr, EFr, BFr, GEFr, Fr, and TFr distributions. Note that the
EWFr model has the lowest values of the statistics. Therefore, the EWFr can
be chosen as the best fitted model to the carbon fibre data.

The histogram, the estimated densities, cdfs, and QQ plots for cancer
data are displayed in Figs. 6 and 7. Similarly, the histogram, the estimated
densities, cdfs, and QQ plots for carbon fibre data are displayed in Figs. 8
and 9. These plots also provide a visual evidence that the EWLi model fits
better to the cancer data than its sub-models and the EWFr model fits better
to the carbon fibre data than its sub-models.
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Table 7. MLEs and their standard errors (in parentheses)
for carbon fibre data

Model Estimates

EWFr α̂ = 0.413 β̂ = 0.1842 ν̂ = 1.2991 â = 1.3401 b̂ = 9.0999
(1.295) (0.177) (0.557) (1.225) (8.270)

KwFr α̂ = 2.0556 β̂ = 0.4654 â = 6.2815 b̂ = 224.18
(0.071) (0.00701) (0.063) (0.164)

BFr α̂ = 1.6097 β̂ = 0.4046 â = 22.0143 b̂ = 29.7617
(2.498) (0.108) (21.432) (17.479)

GEFr α̂ = 1.3692 β̂ = 0.4776 â = 27.6452 b̂ = 17.4581
(2.017) (0.133) (14.136) (14.818)

EFr α̂ = 69.1489 β̂ = 0.5019 â = 145.3275
(57.349) (0.080) (122.924)

TFr α̂ = 1.9315 β̂ = 1.7435 â = 0.0819
(0.097) (0.076) (0.198)

Fr α̂ = 1.8705 β̂ = 1.7766
(0.112) (0.113)

Table 8. Goodness-of-fit statistics for breaking stress of car-
bon fibre data

Model −2�̂ AIC BIC HQIC CAIC W ∗ A∗

EWFr 286.423 296.423 309.449 301.695 297.061 0.05624 0.34423
KwFr 289.059 297.095 307.479 301.276 297.48 0.09585 0.51495
EFr 289.697 295.697 303.513 298.861 295.947 0.10372 0.55798
BFr 303.133 311.133 321.553 315.35 311.554 0.25137 1.39536
GEFr 303.96 311.96 332.381 316.178 312.381 0.25872 1.43853
Fr 344.308 348.308 353.519 350.417 348.432 0.54849 3.13643
TFr 344.475 350.475 358.29 353.638 350.725 0.55598 3.17823
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Figure 6. Estimated pdfs and cdfs of the EWLi model and
its sub-models for the cancer data



MJOM Exponentiated Weibull-H Family Page 19 of 22  155 

EWLi Distribution

Observed

E
xp

ec
te

d
PLi Distribution

Observed

E
xp

ec
te

d

ELi Distribution

Observed

E
xp

ec
te

d

Li Distribution

Observed

E
xp

ec
te

d

WLi Distribution

Observed

E
xp

ec
te

d

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

EELi Distribution

Observed

E
xp

ec
te

d

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 7. QQ plots of the EWLi model and its sub-models
for the cancer data
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11. Concluding Remarks

In many applied areas, there is a clear need for extended forms of the clas-
sical models, i.e., new distributions which are more flexible to capture skew-
ness and kurtosis behavior. Recent developments focus on new techniques
by adding parameters to existing distributions for building classes of more
flexible distributions. In this study, we present a new exponentiated Weibull -
H(EW-H) family of distributions, which extends the Weibull-H class by adding
one extra shape parameter. Many well-known models emerge as special cases
of the EW-H family by choosing special parameter values. Some mathematical
properties of the new family including explicit expressions for the ordinary
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Figure 9. QQ plots of the EWFr model and other distribu-
tions for the carbon fibre data

and incomplete moments, quantile and generating functions, mean devia-
tions, entropies, order statistics, and probability weighted moments are pro-
vided. The model parameters are estimated by maximum-likelihood and the
observed information matrix is determined. We perform a Monte Carlo sim-
ulation study to assess the finite sample behavior of the maximum-likelihood
estimators. We prove empirically by means of two real data sets that some
special models of the EW-H family can give better fits than other models
generated from well-known families.
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